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ABSTRACT. Different models for global Alfv´en eigenmodes are compared from a theoretical

point of view to show that a toroidal gyrokinetic calculation is required to correctly take into

account the mode conversion and predict the stability of tokamaks in the presence of fast particles.

1 INTRODUCTION

There has recently been a number of controversies [1, 2] over which model to trust when

predicting the stability of fusion plasmas, where the inhomogeneity of super-Alfv´enic

(NBI, ICRF, �) particles drive Alfvén eigenmodes (AEs) that could in turn trigger unac-

ceptable losses of confinement.

Theoretical models are clearly required to extrapolate into thermonuclear conditions that

are not accessible today from experimental scalings; meaningful comparisons with mea-

surements are nevertheless possible using the tokamaks that are now in operation to test

the ingredients and the parametric dependencies of the underlying physics. Increasingly

sophisticated models have been implemented in global wave codes and are categorized as

shear-Alfvén wave models (LION [3], NOVA-K [4], CASTOR-K [5], the Frascati code

[6], KIN-2DEM [9]), a two-fluid model (TASK-WM [7]) and a gyrokinetic model for the

bulk species (PENN [8]); they treat the fast particles either perturbatively (LION, TASK-
WM, PENN, NOVA-K, CASTOR-K) or not (Frascati code,KIN-2DEM).

To understand the orders of magnitude discrepancies between various predictions of

growth / damping rates and to resolve the argument in terms of toroidal mode conversion,

this paper starts with a number of basic considerations in sect.2. The different models are

then described and compared on theoretical ground in sect.3, giving a few references to

the tests that have been carried out against experimental measurements. The conclusions

in sect.4 highlight the present understanding of the mode conversion and the AE stability

in tokamaks.



2 UNDERLYING PHYSICS

2.1 MHD, drift, kinetic-Alfv én and resonant wavefields

High frequency! magneto-hydrodynamic (MHD) perturbations are susceptible to un-

dergo resonant interactions with fast (f) super-Alfv´enic particlesvf > vA = B0=
p
4�nimi

for frequencies that range roughly from the electron (e) or ion (i) drift to the Alfv´en fre-

quency: !� = (lnnT )0k�T=(m
) � ! � !A = vA=R � 
i, where
i = qiB=mi

stands for the cyclotron frequency of the ions. From a local dispersion analysis of elec-

tromagnetic waves, keeping the pressure gradients and the finite Larmor radius (FLR) of

the ions, it is known that the drift-waves, the kinetic-Alfv´en wave (KAW) and the global

MHD wavefield get coupled and yield a relation of the form
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Taking the homogeneous limitf!�e ; !�i g ! 0 to recover the standard kinetic-Alfv´en wave

[10], one immediately sees with Faraday’s law how the electrostatic component of a mag-

netic perturbationk? � B � Ek is related to the ion Larmor radius dispersion termk2?�
2
i

and yields resonant Landau interactions with passing electrons that move along the mag-

netic field lines
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In the regime typical of tokamaks nowadays, the Alfv´en velocity lies between the ion

vi and electron thermal velocitiesve, so that for a fixed mode structurek? and similar

plasma conditions, the electron Landau damping is proportional to the square root of the

isotope mass
p
A; this argument has recently been tested against the experiment [11].

Damping occurs also via the collisions between passing or trapped electrons [12, 13], but

this collisional damping is negligible compared with the electron Landau damping for

fusion relevant regimes – as will be substantiated below in answer to [1].

If the inhomogeneity drifts become sufficiently large!� > !, the kinetic energy of

the particles may be transferred to the wave and provides a finite drive that may over-

come the total damping. This can under circumstance occur for the bulk species, but is

most easily achieved by fast (energetic) ions. Substitutingi ! f in (eq.1) when the fast

particle pressure gradient dominates the ions response� 0f > � 0i, it is clear that the wave-

field acquires a resonant or energetic character when the normalized fast particle pressure

�f = 8�Pkin=B
2 is comparable with the bulk�.



2.2 Global effects

If the equilibrium scale length become sizable when measured in terms of the pertur-

bation wavelength, global effects lead to important modifications of the local dispersion

properties. Take for example the shear-Alfv´en wave (f!�; �ig ! 0 in eq.1) in a toka-

mak, use a Fourier decomposition toroidallyexp(in') and poloidallyexp(im�) in order

to obtain an algebraic representation of the parallel wave vectorkk = (n + m=q)=R.

Fig.1 illustrates how different harmonics get coupled and yield so-called BAE, TAE, EAE

gaps where the plasma beta, the toroidicity and ellipticity prevent shear-Alfv´en waves of

any frequency from propagating over large portions of the minor radius. Global (radially

extended,k? 6= 0) solutions however exist within these gaps, the so-called Alfv´en eigen-

modes (AEs): they often have a mixed T/EAE character and require a global calculation

to determine the mode structurek?(s; �) and the corresponding damping / drive.
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Figure 1: Global effects on the shear-Alfv´en wave dispersion.

Global effects modify also the kinetic-Alfv´en and the drift waves, which finally get

combined with AE wavefields into what we call kinetic AEs (KAEs) [14] and drift-kinetic

AEs (DKAEs) [15]. In this sense, Mett & Mahajan’s KTAEs [16] are a special type

of KAEs that involve only the kinetic-Alfv´en wave. Finally, when the energetic particle

character dominates the ion response, global solutions exist also for the resonant wavefield

and are generally referred to as energetic particle modes (EPMs) [17].



2.3 Mode conversion

Is the fundamental process through which power can be linearly transferred between two

waves if their phase velocities somewhere match. First described by Hasegawa & Chen

in the presence of an Alfv´en resonance, it can be understood locally in Fig.2 in terms of a

bi-quadratic dispersion relation of the formak4? + bk2? + c = 0, where a fast (long fluid

scalelength) wave coalesces with a slow (short kinetic scalelength) wavek2?;fast � k2?;slow
in the neighborhood of the resonance. The efficiency of the power transfer depends on

the wavefield amplitude and the spatial extension over which the characteristic length and

phase of both waves match; a correct evaluation therefore requires solving a 4th order

equation, which, for the kinetic-Alfv´en wave, amounts to keeping the FLR correction

term ofO(k2?�
2
i ) in (eq.1).
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Figure 2: Mode conversion in the neighborhood of an Alfv´en resonance.

Several “ad-hoc” models have been proposed to approximate this conversion from the

2nd order (shear Alfv´en) fluid MHD equation of the formek2? + f = 0, which becomes

singular ase ! 0 at the resonance.Continuum damping[18, 19] calculates the residual

absorption of the singularity directly from the MHD model in the limit of an infinitesimal

dissipation. The trick describes the correct amount of mode converted power in an un-

bounded domain [20], but we recently showed in Ref.[21] that it dramatically fails when

global effects alter the amplitude and the phase of the fluid wavefield.Complex resistiv-

ity resolves the singularity of the MHD equations by adding an ad-hoc 4th order term,

without consistently keeping theO(k2?�
2
i ) corrections characteristic of the kinetic-Alfv´en

wave. The mode conversion efficiency calculated in this manner has never been validated

even in 1D against a gyrokinetic calculation, but the inconsistent treatment of the dis-



persion in the neighborhood of fluid resonances is likely to suffer from the same short

commings as the continuum damping.

It is finally important to note that mode conversion is not only possible in the neighbor-

hood of fluid resonances and neither does it take place exclusively to the kinetic Alfv´en

wave: mode conversion can in principle occur anywhere in the plasma where the spatial

scale of a fast (fluid, MHD) wave and a slow (drift, surface quasi-electrostatic, kinetic

Alfv én, energetic particle) wave match.

2.4 Local and global stability

Following the local analysis from sect.2.1, a harmonic oscillationexp(�i!t+t) is locally

unstable if the drive exceeds the damping
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This criterion is extended to global modes by measuring the total power transfer from the

particles to the wavefieldPtot = Pf + Pe + Pi: normalizing with respect to the wave

reactive power!W , a global instability occurs if



!
=

Pf + Pe + Pi

!W
> 0 (4)

i.e. when a net power flows from the particles to the wavefield and amplifies an initial

perturbation. This criterion remains valid in the presence of mode conversion as seen

for example with the DKAE instabilities inDIII-D [15], where power flows from the AE

wavefield to an electromagnetic drift wave that is Landau damped locally by the electrons,

and simultaneously channels from the fast ions driving this drift wave back to the global

wavefield to be driven in fact through the conversion layer.

3 GLOBAL MODES & DAMPING MODELS

By analogy with the local analysis (eq.2), the global damping of AEs depends sensitively

on the wavefield structurej=!j � k2?(s; �) and in particular on the short scale lengths

created by mode conversion wherek2?;fast � k2?;slow. It is therefore not surprising that the

large discrepancies between theoretical stability predictions result more from the model-

ing of the AE wavefield structure and the mode conversion layers rather than the actual

evaluation of the drive or damping.



3.1 Shear-Alfv́en wavefield & ad-hoc mode conversion models

Neglecting all possible couplings to kinetic waves, fluid modes such as the G/T/EAE can

be described directly with the quadratic (shear-Alfv´en) fluid MHD equations; solutions

have been obtained numerically using codes such asLION, NOVA-K, CASTOR-K and

analytically with a ballooning expansion assuming radially localized modes. The fast

particle drive [22], ion Landau [23], electron Landau [24, 3] and collisional dampings

[25] calculated for these wavefields are however unrealistically small (j=!j < 0:001)

compared with the measurements from present day experiments.

3.1.1 Ad-hoc continuum damping

The resonance absorption trick [19] has been used to regularize the MHD singularity when

a global wavefield is formed in the presence of Alfv´en resonances; the so-called continuum

damping of AEs has first been computed numerically [26, 27], implemented in theLION
andCASTOR codes and solved analytically [28, 29] for radially localized modes. Using

two cold resistive fluids for validation purposes, we repeated such calculations with the

PENN code in Ref.[8] by writing the current perturbation along the magnetic field as

jk = � i!

4�

�
!2
p

!(! + i�e)

�
Ek ! � !2

p

4��e
Ek (5)

where the term!(! + i�e) in the denominator is first replaced byi!�e to reduce the 4th

order equation ink? down to 2nd order (neglecting the electron inertia in the momentum

balance) before taking the collisionless limit�e ! 0. The large continuum damping

j=!j � 0:01 obtained suggested first that only gap modes (having no intersection with the

shear-Alfvén continuum) can be observed in actual plasmas. Serious contradictions have

been found since both within theory [21] and the experiments [30, 31]; weakly damped

modes have been measured with large fields in the neighborhood of Alfv´en resonances

with continuum damping rates exceeding the damping from mode conversion and the

measurements by more than an order of magnitude [30]. Such arguments show that the

continuum damping of global AEs is misleading and that shear-Alfv´en continuum plots

such as Fig.1 are of little value to predict the damping and even the existence of AEs.

3.1.2 Ad-hoc radiative damping

If a TAE mode is strongly localized within a toroidicity gap and the peaking of the wave-

field such that mode conversion becomes possible wherek2?;TAE � k2?;KAW, the amount

of power “radiated away by the kinetic-Alfv´en wave” can be calculated perturbatively di-

rectly from the shear-Alfv´en wavefield [32, 33]. Assuming that all the power is finally



absorbed in the vicinity of the conversion region (excluding reflections and fast particle

drive on the kinetic Alfvén wave), the so-called radiative damping has been evaluated

with the NOVA-K code. Choosing a KAE inJET where the gyrokineticPENN code a

priori predicted that this particular conversion / damping mechanism is dominant (Fig.1

in Ref.[31]), the radiative damping and the electron Landau damping obtained from a

self-consistent gyrokinetic description of the global wavefield [34, 31] are found to agree

within approximatively 20% [31, 34]. The problem with an ad-hoc evaluation of radiative

damping is that it is not a priori possible to know if other conversion mechanism exist and

dominate; choosing another KAE where thePENN code predicts that conversion takes

place because of weak magnetic shear in the core, order of magnitude discrepancies ap-

pear between the damping from the two codes [34, 31]. An ad-hoc radiative damping

model is for example unable to reproduce the isotope scaling from Ref.[11], for which

good agreement has been achieved betweenPENN and the measurements from JET.

3.1.3 Ad-hoc complex resistivity

It was apparent in (eq.5) how it is possible to form a 4th order equation with a small change

to the resistive MHD by adding an imaginary part to the plasma resistivity [35]:

jk = � i!
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The kinetic-Alfvén wave dispersion and the mode conversion is mocked-up, keeping a

tiny collisional dissipation� �e to reproduce weakly damped KTAE modes that were

predicted analytically by Mett & Mahajan [16]. Implemented in theCASTOR-K code

for global wavefields, the results from the complex resistivity model are however often in

contradiction with the gyrokinetic calculations from thePENN code. This not surprising,

since the dispersion is here not consistent with the FLR correctionO(k2?�
2
i ) characteristic

of the kinetic-Alfvén wave. The 4th order complex resistivity equation is very different

from a consistent gyrokinetic ordering, the amount of power converted where the spatial

scales matchk2?;TAE � k2?;KAW is altered and the Landau damping, which should be a se-

lective 2nd order differential operator to reproduce thej=!j � k2? dependence of (eq.2),

is entirely absent. This explains the large qualitative differences between the complex re-

sistivity spectrum calculated by theCASTOR-K code and the gyrokinetic spectrum. To

our knowledge, it was never possible to show a quantitative agreement between damping

rates predicted using the complex resistivity model and the measurements from the JET

tokamak.



3.2 Electromagnetic gyrokinetics (GK)

By now, it should be clear that a consistent description of the coupling between a fluid

AE and the kinetic-Alfvén wave requires a gyrokinetic description of the passing bulk

ions with FLR corrections at least toO(k2?�
2
i ). This has first been derived in Ref.[36] and

implemented in thePENN code [8]. The perturbed current contributes mainly along the

magnetic field and can be written symbolically using the dispersion function1

jk = � i!
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The second order termv2i =

�2
i ry

?r? � ��2i k2?, reproduces the FLR induced kinetic-

Alfv én wave dispersion (eq.1) with the real part of the second dispersion function. In

addition, a number of terms are not shown here and contribute in a non-evident manner to

account for the proper amount of mode conversion in toroidal geometry. The expression

shows explicitly how the resistive damping (collision frequency�e in the imaginary part

of the first dispersion function) differs from the selective Landau damping (! in the imag-

inary part of the second dispersion function). Most important compared with the previous

models, is that the Landau damping is here proportional to the electrostatic componentEk:

solving Maxwell’s equations for an Alfv´enic perturbationr?�B = r?�r�E � Ek

with the spatial scale self-consistently described with FLR effects, this reproduces the

selective damping� k2? from (eq.2) that affects mainly the shorter wavelength kinetic-

Alfv én wave. To perform analytically the integration over the resonant denominators

(!�kkvk)�1 and formulate a differential problem in both the radial and poloidal directions,

the wave-particle resonance has been approximated assuming passing particles and using

a functional dependence for the parallel wave vector, e.g.kk ' kTAE' (s; �) = 1=(2qR).

This approximation can be tested a posteriori in two manners:

� by monitoring the sensitivity of the global damping on different choices that are

plausiblek' 2 f(2qR)�1; (qR)�1; n=Rg,

� comparing the complex eigenvalue calculated directly from the model [36] with the

damping evaluated perturbatively from the gyrokinetic wavefields=! = Ptot=(!W ).

To give a quantitative answer to the controversy in Ref.[1], the drift-kinetic power

for passing electronsPDKe [3] is here extended to account for what turns out to be

1Shafranov’s definitionZSh(�) = ��ZNRL(�)



a really negligible damping from trapped electrons [38]

Pe = (1� �t)PDKe + �tPcol with �t =

r
B

Bmax

(8)
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where� = (�ee + �ei)R=� and� is the electrostatic potential calculated here con-

sistently with the gyrokinetic model. The power transfer with passing fast- and bulk

ions is evaluated with the non-local expression from Ref.[39] valid to all orders in

the Larmor radiusk?�i > 1.

Except for DKAE modes where the mode conversion takes place to an electromagnetic

drift wave [15, 37] and depends rather sensitively on the choice ofk', these self-consistency

checks largely justify the approximations made. They show that the global damping of

AEs depends mainly on the location where the conversion occurs, which determines how

much power is converted and finally deposited by the kinetic Alfv´en wave. In other words,

the global damping of AEs depends only weakly on the local Landau damping that affects

only the distance the wave covers before it is ultimately damped.

The strength of our approach is that it does not a priori rely on any particular mode

conversion mechanism that has been mocked-up from an informed guess; following the

dispersion and damping of both the fast and slow global wavefields, mode conversion

spontaneously occurs wherek2?;fast � k2?;slow. Five conversion mechanisms have been

found so far, of which four occur to the kinetic Alfv´en wave and only two had been

expected from heuristic arguments. They are illustrated in the sketch of Fig.3:

1. Near the plasma center, where the aspect ratio is large and the shear is sufficiently

weak, the kinetic-Alfvén wave expands radially until it matches the global fluid

scale [31]. This mechanism reproduces the global AE dampings measured in a set

of similar JET discharges, showing with (eq.2) that the gyrokinetic mode structure

correctly changes with the isotope mass [11].

2. Within gaps, mode conversion sometimes reduces to radiative damping if the kinetic-

Alfv én wave is damped in the vicinity of this gap, so that both models reproduce

the global damping measurements from JET to a good degree of accuracy [31, 34].

Global effects within a single gap can however also split a weakly damped AE into

KAEs [14, 40], couple adjacent gaps to form high�n global KAE [37] and the fast

particles may even drive the kinetic Alfv´en wave [37].

3. At Alfv én resonances, mode conversion is generally not as efficient as continuum

damping. The wavefield and damping predicted by thePENN andCASTOR-K
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Figure 3: Sketch of four mode conversion mechanisms between the fluid (MHD) and
kinetic Alfvén (KAW) wavefields.

codes have been compared with measurements from JET in Ref.[30, 31] showing

clear contradictions with continuum damping model.

4. In the plasma edge, the large magnetic shear associated with the plasma shaping (X-

point) squeezes the wavefield radially and triggers a mode conversion. The strong

global damping rate that results has been tested in the time evolution of Ref.[31].

5. Mode conversion to electromagnetic drift waves becomes possible in the neighbor-

hood of rational surfaces wherekk ' 0 if !�=!TAE ' 2nq2(�=a)2(R!pi=c) ap-

proaches unity, so that drift-kinetic AEs (DKAEs) become unstable. They provide

for a plausible mechanism for the instabilities observed in the TAE frequency range

of DIII-D [41, 15]; their modeling is however likely to suffer from the approximative

treatment of the parallel dynamics withk' = 1=(2qR).

So far, the gyrokineticPENN model with approximate parallel dynamics is the only tool

that deals properly with the mode conversion of global wavefields in a tokamak; most

toroidal predictions remain therefore to be confirmed using other models.

TheKIN-2DEM code [9] from PPPL/Princeton does not presently retain the dynamics

of passing ions and therefore misses the mode conversion to kinetic-Alfv´en wave that is

essential for AEs and perhaps also important for kinetic ballooning modes (KBM). A gy-

rokinetic model including the main ingredients has recently been formulated in Ref.[42]

and might be implemented in a future version of theNOVA code. A model for electro-

magnetic micro-instabilities is currently under development at CRPP/Lausanne for low�

plasmas in simple toroidal geometry and includes the parallel dynamics of passing and



trapped bulk particles to all orders ink?�i [43]; the model retains the mode conversion

both to the kinetic-Alfvén and the drift waves and will soon be used to confirm and extend

the present knowledge beyond the FLR approximation. In parallel, a new electromagnetic

model for macro-instabilities has been derived for a future version of thePENN code,

keeping the complete parallel dynamics of passing bulk- and energetic ions together with

large� and arbitrary shape in the limit of small Larmor radii. A complete derivation for the

current perturbation along the magnetic field will be given elsewhere, but finally results in

an integro-differential expression in configuration space that can be written symbolically

as
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i!
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The kernelK(�; �0) clearly plays an essential role here, since it contains the wave-particle

resonances that are integrated numerically overdvk and couples different poloidal loca-

tions through the integral operator. Finite Larmor radius corrections appear explicitly with

the second order operators�? and inhomogeneities with the drift frequency!�. Resonant

effect from energetic particles are not shown here, but are also kept in the small Larmor

radius approximation. The physics we hope to study with this new model ranges down

in frequency from the energetic-particle-kinetic AEs, drift-kinetic AEs, beta-induced AEs

and finally the non-ideal counterparts of MHD instabilities such as KBMs, internal kink

and resistive-wall modes.

4 CONCLUSIONS

Different models currently used to predict the stability of AEs have been compared and

discussed from the point of view of mode conversion. Theoretical arguments underline

that a global gyrokinetic model is required for a consistent description and show a num-

ber of contradictions with ad-hoc models that mock-up this phenomenon. Ultimately,

however, the experiment is the only and best referee: the high quality damping measure-

ment from JET [44] are far more delicate to reproduce quantitatively than the qualitative

comparison of instability thresholds. These measurements have so far only been repro-

duced with the variety of mode conversion mechanisms discussed above. This should be

enough arguments to resolve most of the controversies and should motivate other groups

to develop an independent check of the global gyrokinetic predictions that stem now ex-

clusively from thePENN code.
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